
ResilientDB: Global Scale Resilient
Blockchain Fabric

Suyash Gupta Sajjad Rahnama Jelle Hellings Mohammad Sadoghi

Exploratory Systems Lab

University of California Davis

2

Blockchain Applications

Cryptocurrencies

Energy Trading

and Management
Healthcare

Waste

Management

Project Tracking

3

At the core of any Blockchain application is a

Byzantine Fault-Tolerant (BFT) consensus protocol.

Order Txn

OK OK

OK

Challenges For Geo-Scale Blockchains

4

Blockchain expects decentralization→ Replicas maybe geo-distributed

High! Low!

Limitations of Existing Consensus Protocols

5

Normal-case metrics for a system with z clusters, each with n replicas of which at
most f , n > 3f , are Byzantine

Each cluster runs PBFT to
select, locally replicate, and

certify a client request.

Primary at each cluster
shares the certified client

request with other clusters.

GeoBFT Protocol

Local Replication Inter-cluster Sharing Ordering and Execution

Order the certified
requests, execute them,
and inform local clients.

Topology-aware protocol.

Parallel consensus at each cluster.

Low inter-cluster communication overheads.

6

7

Client

R2,1

R2,2

R2,3

PC2

ReplyLocal Request Local Replication

Client

R1,1

R1,2

R1,3

PC1

Global
Sharing

Local
Sharing

Cluster 1
C1

Cluster 2
C2

Local PBFT
Consensus on T1

Local PBFT
Consensus on T2

T1

T2

Local Replication

• GeoBFT employs PBFT for local replication.

• Tolerates up to f failure out of 3f+1 replicas

• Three phases of which two require quadratic communication complexity.

• Safety is always guaranteed and Liveness is guaranteed in periods of partial synchrony.

• View-Change protocol for replacing malicious primary

8

PBFT Civil Execution

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

T

Pre-Prepare Prepare Commit Client
Request

9

Construct certificates
that include T and n-f

Commit messages.

Inter-Cluster Sharing

PC1

R2,1

R2,2

R2,3

PC2

Local PhaseGlobal Phase

10

The Primary PC1 sends a certificate that includes the client request and commit

messages from n-f replicas of Cluster C1 .

Ordering and Execution

11

GeoBFT orders requests deterministically.

For i < j, requests of Cluster Ci are executed before requests of cluster Cj.

For example: requests of C1 are executed before C2 .

Implementation on ResilientDB

12

Client

Requests
Prepare & Commit

messages
Input

Network

Message from

Clients and Replicas

Network
Batching

Worker

Certify

Execute

Output

Certificates

from other clusters

Message to

Replicas or Clients

ResilientDB associates a multi-threaded deep-pipelined architecture with each replica.

ResilientDB is open-sourced at https://resilientdb.com/

REPLICA

https://resilientdb.com/

Ledger (Blockchain) Management

13

• ith block in the ledger contains the ith executed request.

• In each round of GeoBFT, each replica executes z requests, each belonging to a different

cluster Ci , 1 <= i <= z.

• Hence, in each round, each replica creates z blocks.

• To ensure immutability, each block includes both client requests and exchanged certificates.

Evaluation on ResilientDB

14

• Google cloud used for deploying replicas and clients.

• Each replica used 8-core Intel Skylake CPUs and had access to 16 GB memory.

• Total 160K clients deployed on eight 4-core machines.

• Workload provided by Yahoo Cloud Serving Benchmark (YCSB).

• Replicas deployed across six different regions: Oregon, Iowa, Montreal, Belgium, Taiwan and Sydney.

• Primaries for centralized protocol placed at Oregon (highest bandwidth).

15

Scalability

Total replicas = 60

1.3x

3.1x

16
4 clusters and 7 replicas per cluster

Batching

1.6x

6x

Conclusions and Final Remarks

17

• For achieving faster local replication, GeoBFT can employ other efficient BFT protocols,

such as PoE.

• Modern cryptographic techniques such as Threshold signatures can be used in place of

sending n-f Commit messages.

• If a cluster does not have a request, it can send “no-op” messages.

• GeoBFT optimizes consensus by reducing global communication costs.

• Parallel local replication helps to increase system throughput.

References

18

1. S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow., 13(6):868–883, Feb. 2020.

2. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third Symposium on Operating Systems Design and Implementation, pages

173–186. USENIX Association, 1999.

3. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems, 20(4):398–461, 2002.

doi:10.1145/571637.571640.

4. M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. HotStuff: BFT consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on

Principles of Distributed Computing, PODC, pages 347–356. ACM, 2019.

5. R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative byzantine fault tolerance. In Proceedings of Twenty-first ACM SIGOPS Symposium on

Operating Systems Principles, SOSP, pages 45–58. ACM, 2007.

6. Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen, and David Zage. Steward: Scaling byzantine fault-tolerant

replication to wide area networks. IEEE Transactions on Dependable and Secure Computing, 7(1):80–93, 2010. doi:10.1109/TDSC.2008.53.

7. S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi, Proof-of-Execution: Reaching Consensus through Fault-Tolerant Speculation, CoRR, vol. abs/1911.00838, 2019.

