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At the core of any Blockchain application is a 

Byzantine Fault-Tolerant (BFT) consensus protocol.
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Challenges For Geo-Scale Blockchains

4

Blockchain expects decentralization→ Replicas maybe geo-distributed

High! Low!



Limitations of Existing Consensus Protocols
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Normal-case metrics for a system with z clusters, each with n replicas of which at 
most f , n > 3f , are Byzantine



Each cluster runs PBFT to 
select, locally replicate, and 

certify a client request.

Primary at each cluster 
shares the certified client 

request with other clusters.

GeoBFT Protocol

Local Replication Inter-cluster Sharing Ordering and Execution

Order the certified
requests, execute them,
and inform local clients.

Topology-aware protocol.

Parallel consensus at each cluster.

Low inter-cluster communication overheads.
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Local Replication

• GeoBFT employs PBFT for local replication.

• Tolerates up to f failure out of 3f+1 replicas 

• Three phases of which two require quadratic communication complexity.

• Safety is always guaranteed and Liveness is guaranteed in periods of partial synchrony.

• View-Change protocol for replacing malicious primary
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PBFT Civil Execution
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Construct certificates 
that include T and n-f 

Commit messages.



Inter-Cluster Sharing
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The Primary PC1 sends a certificate that includes the client request and commit 

messages from n-f replicas of Cluster C1 .



Ordering and Execution
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GeoBFT orders requests deterministically.

For i < j, requests of Cluster Ci are executed before requests of cluster Cj.

For example: requests of C1 are executed before C2 .



Implementation on ResilientDB
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ResilientDB associates a multi-threaded deep-pipelined architecture with each replica.

ResilientDB is open-sourced at https://resilientdb.com/

REPLICA

https://resilientdb.com/


Ledger (Blockchain) Management
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• ith block in the ledger contains the ith executed request.

• In each round of GeoBFT, each replica executes z requests, each belonging to a different 

cluster Ci , 1 <= i <= z. 

• Hence, in each round, each replica creates z blocks.

• To ensure immutability, each block includes both client requests and exchanged certificates.



Evaluation on ResilientDB
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• Google cloud used for deploying replicas and clients.

• Each replica used 8-core Intel Skylake CPUs and had access to 16 GB memory.

• Total 160K clients deployed on eight 4-core machines.

• Workload provided by Yahoo Cloud Serving Benchmark (YCSB).

• Replicas deployed across six different regions: Oregon, Iowa, Montreal, Belgium, Taiwan and Sydney. 

• Primaries for centralized protocol placed at Oregon (highest bandwidth).
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Scalability

Total replicas = 60

1.3x

3.1x
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4 clusters and 7 replicas per cluster

Batching

1.6x

6x



Conclusions and Final Remarks
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• For achieving faster local replication, GeoBFT can employ other efficient BFT protocols, 

such as PoE.

• Modern cryptographic techniques such as Threshold signatures can be used in place of 

sending n-f Commit messages.

• If a cluster does not have a request, it can send “no-op” messages.

• GeoBFT optimizes consensus by reducing global communication costs.

• Parallel local replication helps to increase system throughput.
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